Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms
نویسندگان
چکیده
Most expectation-maximization (EM) type algorithms for penalized maximum-likelihood image reconstruction converge slowly, particularly when one incorporates additive background effects such as scatter, random coincidences, dark current, or cosmic radiation. In addition, regularizing smoothness penalties (or priors) introduce parameter coupling, rendering intractable the M-steps of most EM-type algorithms. This paper presents space-alternating generalized EM (SAGE) algorithms for image reconstruction, which update the parameters sequentially using a sequence of small "hidden" data spaces, rather than simultaneously using one large complete-data space. The sequential update decouples the M-step, so the maximization can typically be performed analytically. We introduce new hidden-data spaces that are less informative than the conventional complete-data space for Poisson data and that yield significant improvements in convergence rate. This acceleration is due to statistical considerations, not numerical overrelaxation methods, so monotonic increases in the objective function are guaranteed. We provide a general global convergence proof for SAGE methods with nonnegativity constraints.
منابع مشابه
Space-alternating Generalized Em Algorithms for Penalized Maximum-likelihood Image Reconstruction
Most expectation-maximization (EM) type algorithms for penalized maximum-likelihood image reconstruction converge particularly slowly when one incorporates additive background effects such as scatter, random coincidences, dark current, or cosmic radiation. In addition, regularizing smoothness penalties (or priors) introduce parameter coupling, rendering intractable the M-steps of most EM-type a...
متن کاملSpace-Alternating Generalized Expectation-Maximization Algorithm
The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all paramete...
متن کاملSpace - Alternating Generalized Expectation - Maximization AlgorithmJe rey
| The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all parame...
متن کاملSpace-alternating generalized expectation-maximization algorithm
The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all paramete...
متن کاملNew Complete-Data Spaces and Faster Algorithms for Penalized- Likelihood Emission Tomography
The classical expectation-maximization (EM) algorithm for image reconstruction suffers from particularly slow convergence when additive background effects such as accidental coincidences and scatter are included. In addition, when smoothness penalties are included in the objective function, the M-step of the EM algorithm becomes intractable due to parameter coupling. Thie paper describes the sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 4 10 شماره
صفحات -
تاریخ انتشار 1995